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A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical
moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce
such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium
statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike
model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of
corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan
equation. We argue that neural activity governed by this model exhibits a dynamical phase transition which is
in the universality class of directed percolation. More general models �which may incorporate refractoriness�
can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high
connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for
experimentally accessible measurements, and thus, consistent with measurements in neocortical slice prepara-
tions, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative
magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental iden-
tification of dynamic universality classes in vivo is an outstanding and important question for neuroscience.
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I. INTRODUCTION

It has proven difficult to produce an analytic theory for
the treatment of fluctuations in the neural activity of neocor-
tex. It is clear, however, that mean field models are inad-
equate �1�. Consistent with this fact, there is little detailed
understanding of the role correlated activity plays in the
brain, although such correlations have been associated with
expectant and attendant states in behaving animals �2,3�.

The neocortex contains on the order of 1010 neurons, each
supporting up to 104 synaptic contacts. This enormous con-
nectivity suggests that a statistical approach might be appro-
priate. We present a theory developed with the methods of
stochastic field theory applied to nonequilibrium statistical
mechanics �4,5�. The formalism for this theory is based pri-
marily on the assumption that neural dynamics is Markovian,
although this can be relaxed. The derivation of the master
equation for this process is based on an analysis of neuro-
physiology. The intuition behind the resulting theory is that
the action potentials or “spikes” emitted by neurons are akin
to the molecular density in a chemical kinetic reaction. The
expectation value of the field, ���x , t��, describes the density
of spikes that still influence the network at the point �x , t�. It
is a measure of neural “activity.”

The use of field theory solves the “closure” problem typi-
cally seen in statistical theories by making available the loop
expansion, which allows for a systematic calculation of cor-
rections to the mean field behavior. In the cortex the degree
of connectivity is expected to be very high, and thus an ana-
log of the Ginsburg criterion tells us that the loop expansion

should be useful at finite order. Likewise, the theory makes
available expansions for the correlation functions. Often, a
field theory approach is used in order to facilitate renormal-
ization group techniques for describing the critical behavior
of a system. Indeed, we will still find a use for renormaliza-
tion arguments.

While a field theorist might find this a novel use of an
established technique, much of the aim of this paper is to
provide a framework in which the practicing theoretical neu-
roscientist can approach an analysis of fluctuations in neural
systems. Since this community is not, by and large, familiar
with field theory, there is some background discussion.

II. STOCHASTIC MODELS OF NEURAL ACTIVITY

A. The effective spike model

Consider a network of N neurons. The configuration of
each neuron is given by the number of “effective” spikes ni
that neuron i has emitted. There is a weight function wij
describing the relative innervation of neuron i by neuron j.
The probability per unit time that a neuron will emit another
spike, i.e., transition from the state ni to the state ni+1, is
given by the firing rate function f�s�, which depends upon
the input s to the neuron. We imagine this input to be due to
both an external input I and the recurrent input from other
neurons, � jwijnj. We also include a decay rate � to account
for the fact that spikes are effective only for a time interval
of approximately 1/�. This decay can be interpreted as either
a potential failure of postsynaptic firing or the time constant
of the synapse.

In total, the variable ni describes the number of spikes
which are still affecting the dynamics of the system. Outside*Electronic address: buicem@niddk.nih.gov
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of interactions, each spike has a lifetime of approximately
1/�. When the system undergoes a transition such that ni
→ni−1, it means that a spike at neuron i, say the earliest one
fired, is no longer having an effect upon the dynamics. Simi-
larly, the transition ni→ni+1 means that neuron i has fired
�again�.

This model is a Markov process, which enables the rep-
resentation of its dynamics by a master equation

dP�n� ,t�
dt

= �
i

��ni + 1�P�n� i+,t� − �niP�n� ,t� + f��
j

wijnj + I	
��P�n� i−,t� − P�n� ,t�� . �1�

The component ni of n� is the number of effective spikes that
have been emitted by neuron i. P�n� , t� is the probability of
the network having the configuration described by n� at time
t. The special configurations n� i+ and n� i− are equal to configu-
ration n� except that the ith component is ni±1, respectively.

This model makes standard assumptions to facilitate the
use of nonequilibrium statistical mechanics. In particular, in
addition to the Markov assumption, the neurons are all as-
sumed identical, with identical � and f�s�, although this can
and will be relaxed. We also assume that wij is a function
only of 
i− j
, i.e., the pattern of innervation is the same for
every neuron.

We wish to compute either the probability distribution
P�n� , t� or, equivalently, its moments

�ni�t�nj�t��nk�t�� ¯ � , �2�

where the expectation value is over all statistical realizations
of the Markov process. Note that we are abusing notation by
adding a time argument to ni�t�. This indicates that we are
interested in the expectation value of ni at time t. In particu-
lar, let us define

ai�t� = �ni�t�� = �
n�

niP�n� ,t� . �3�

ai�t� is a measure of the activity in the network. In general,
this is calculated using a mean field approximation. The stan-
dard approach is to derive equations governing the time evo-
lution of the mean and ignore the effects of higher-order
correlations such as �ni�t�nj�t��� �as shown below, for the
effective spike model this produces the Wilson-Cowan equa-
tion�. Using the machinery of stochastic field theory, we will
demonstrate how to calculate these quantities and the equa-
tions governing their evolution.

Because it does not account for refractory effects, we ex-
pect this model to have difficulties with modeling high firing
rates. In particular, any given neuron could fire arbitrarily
fast in an arbitrarily small amount of time. An approximate
substitute is to choose the firing rate function f�s� to be satu-
rating. It is possible to account for refractory effects by, for
example, adding a temporal component to the weight func-
tion, i.e., a delay; the input to the neuron is given by the
states some number of time steps in the past. Technically,
this is no longer a Markov process if it involves the state of
the network at more than one time step. This is not a problem
for the formalism, but for now we will keep the mechanics

simple by assuming the Markov property. Finally, we would
like to point out that f�s� need not be smooth, and the exten-
sions to the Wilson-Cowan equations apply for f�s� which
are almost everywhere differentiable. However, our renor-
malization arguments later will depend upon smoothness.

B. Older models

The effective spike model grew out of older models intro-
duced by Cowan. In �6�, Cowan introduced an approximate
Markov process to describe the statistics of neurons consid-
ered as objects with a fixed set of basis states. In the simplest
case, a neuron can be considered “active” or “quiescent.” A
refinement of this considers that neurons can also occupy a
“refractory” state. These states are taken from an analysis of
the neuron’s firing behavior. When an action potential is trig-
gered, there is a brief period in which the cell membrane is
depolarized �the active state� after which it becomes hyper-
polarized �the refractory state, which makes it more difficult
for the neuron to fire�, before returning to rest �the quiescent
state� to await another depolarizing event. Whether one
wishes to account for the refractory state depends upon the
time scales under consideration.

The full state of a given neuron is defined by the prob-
ability that it is in any of the basis states. Likewise, the
dynamics are defined by a master equation along with firing
rate functions which gave the probability for a neuron to
change state given the states of the other neurons in the net-
work. State diagrams for two- and three-state neurons are
given in Fig. 1. In equilibrium statistical physics, models
such as Glauber dynamics or similar for the Ising or Potts
models are the obvious parallels, with the central distinguish-
ing feature being the absence of detailed balance.

The Cowan models are perhaps more satisfying because
they are closer to the biology of real neurons, albeit still
stochastic. In turn we can connect the effective spike model
to the Cowan models. A qualitative method of arriving at the
effective spike model from the dynamics defined by Cowan
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FIG. 1. Graphical representations of Cowan dynamics for the �a�
two- and �b� three-state neural models. A, Q, and R represent active,
quiescent, and refractory states, respectively. The arrows represent
possible transitions with the indicated transition rates. Open arrows
indicate that the corresponding rate is potentially dependent on the
state of the network, i.e., the activity of the other neurons in the
network, with firing rate functions f and g.
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is to consider the states of low activity �i.e., where most of
the neurons are quiescent�. The quiescent state then serves as
a “thermal bath” of sorts for the active states. In the thermo-
dynamic limit �N→ � �, there are an infinite number of neu-
rons within a small region. If we look at time scales such that
refractory effects are negligible, the primary variable of rel-
evance is the number of active neurons in a given region of
the network. The effective spikes of the spike model can be
interpreted as the number of neurons active within a small
region at a given time. The decay constant � then describes
the length of time each spike remains active before being
reabsorbed by the quiescent bath.

In Appendix C, after we have introduced the technology
used to analyze the effective spike model, we give a brief
discussion of how the Cowan models are analyzed in similar
fashion and how they can be reduced to the effective spike
model.

III. FIELD THEORY FOR THE EFFECTIVE SPIKE
MODEL

Using the master equation �1�, it is straightforward to de-
rive a stochastic field theory describing the continuum and
“thermodynamic” �N→ � � limits of this model. The explicit
derivation is given in the appendices. There are two basic
steps to this process. First, one formulates an operator repre-
sentation of the configurations available to the system, i.e.,
the states with probability distribution P�n� , t� and of the mas-
ter equation. This is shown in Appendix A. Second, one uses
the coherent state representation to transform the operators
into the final field variables. This is shown in Appendix B.

The end result is a generating functional Z�J , J̃� �Eq. �11�� for
moments of two fields ��x , t� and �̃�x , t� �i.e., functional de-
rivatives of Z produce moments of ��x , t� and �̃�x , t��. These
fields are related to the physical quantities of interest via

��
i

n�xi,ti�
 = ��
i

��̃�xi,ti���xi,ti� + ��xi,ti��
 . �4�

We have promoted the neural index into an argument x. The
index i in this context refers to points �i.e., the neuron at
location xi� in whose correlations we are interested. Loosely
speaking, one can think of ��x , t� as the variable describing
n�x , t�, and �̃�x , t� as describing the network’s response to
perturbations �it is often called the “response field”�. 1�̃�x , t�
has the property that

��
i

�̃�xi,ti��
j

��xj,tj�
 = 0 �5�

if there is at least one i such that ti� tj for all j. In particular,
we have

a�x,t� = �n�x,t�� = ���x,t�� �6�

and �if t1� t2�

�n�x1,t1�n�x2,t2�� = ���x1,t1���x2,t2��

+ ���x1,t1��̃�x2,t2��a�x2,t2� . �7�

The correlation function

��x1,t1;x2,t2� = ���x1,t1��̃�x2,t2�� �8�

is called the propagator and describes the network’s linear
response. It has the property

lim
t→t+�

��x1,t;x2,t�� = 	�x1 − x2� �9�

so that the equal-time two-point correlator is given by

�n�x1,t�n�x2,t�� = ���x1,t���x2,t�� + 	�x1 − x2�a�x2,t� .

�10�

The generating functional Z�J , J̃� is given by the follow-
ing path integral �see Appendix B� over ��x , t� and �̃�x , t�:

Z�J, J̃� =� D� D�̃e−S��,�̃�+J·�̃+J̃·�, �11�

where D indicates a functional integration measure; we are
using the notation

J̃ · � =� ddx dt J̃�x,t���x,t� �12�

�we have allowed the domain of x to have d dimensions; see
below�. The “action” S�� , �̃� is defined as

S���x,t�,�̃�x,t�� = �
−�

�

ddx��
0

t

dt �̃�t� + ��̃� − �̃f�w � ��̃�

+ �� + I�	 − �
−�

�

ddxn̄�x��̃�x,0� . �13�

There is an initial state operator in this action proportional to
n̄�x� �see Appendix A� and � denotes a convolution. It cor-
responds to the assumption that the network starts out in an
uncorrelated state where each neuron x has a Poisson distri-
bution of spikes with mean n̄�x�. Other such initial state op-
erators will correspond to different initial �possibly corre-
lated� states.

We should add a word concerning the dimension d. Al-
though we did not mention it in the discussion of the model,
it is crucial in the thermodynamic and continuum limits, and
has measurable effects. For example, the emergent patterns
from a bifurcation will be affected by the dimension d. We
have left it arbitrary, but we expect d to take the value 2 or 3
�or possibly in between to allow for a fractal lattice�. Real
cortex is of course three dimensional, but certain applications
may be adequately described by a two-dimensional network
�i.e., the correlation length may be longer than the extent of
the cortex in a particular dimension�. In the event that inter-
actions are simply between nearest neighbors, d character-
izes the number of neighbors any given neuron will have.

1More precisely, the fields ��x , t� and �̃�x , t� are related to n�x , t�
and a new field ñ�x , t� via 1+ �̃�x , t�=exp�ñ�x , t�� and ��x , t�
=n�x , t�exp�−ñ�x , t��. One could formulate the theory in terms of
n�x , t� and ñ�x , t�, but the action would be more complicated.
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The opposite extreme of all-to-all homogeneous coupling
produces an effectively high-dimensional system. We con-
sider connectivity that is short range relative to the total sys-
tem size.

The generating functional �11� contains all of the statisti-
cal information about the system. In principle, one must sim-

ply calculate Z�J�x , t� , J̃�x , t�� for any model. Realistically,
this is possible for only the simplest of systems. Typically,
one evaluates the generating functional via a perturbation
series. The action is separated into the piece bilinear in
��x , t� and �̃�x , t�, called the “free” action, and the remain-
der, called the “interacting” action:

S��,�̃� = Sf��,�̃� + Si��,�̃� . �14�

This allows us to define the linear operator L as follows:

Sf��,�̃� = �̃�x,t�L���x,t�� , �15�

as well as the propagator ��x , t�,

L���x − x�,t − t��� = 	�x − x��	�t − t�� . �16�

In other words, ��x , t� is the Green’s function for the differ-
ential operator L. This allows us to define a perturbation
expansion using the remainder of the action Si,

Z�J�x,t�, J̃�x,t�� =� D� D�̃�
n=0

�
�− Si��,�̃��n

n!
e−Sf��,�̃�+J·�̃+J̃·�.

�17�

We can rewrite this as

Z�J�x,t�, J̃�x,t�� = �
n=0

�
�− Si�	/	J̃,	/	J��n

n!

�� D� D�̃ e−Sf��,�̃�+J·�̃+J̃·�, �18�

where we have replaced the arguments of Si with functional
derivatives in order to write the generating functional as an
expansion of moments of a Gaussian path integral:

Zf�J�x,t�, J̃�x,t�� =� D� D�̃ e−Sf��,�̃�+J·�̃+J̃·�. �19�

We can compute the generating functional Zf via completing
the square,

��x,t� → ��x,t� + � · J ,

�̃�x,t� → �̃�x,t� + J̃ · � , �20�

and so

Zf�J�x,t�, J̃�x,t�� =� D� D�̃ e−Sf��,�̃�+J̃·�·J = Zf�0,0�eJ̃·�·J.

�21�

Zf�0,0� is a normalization factor. This produces the follow-
ing series:

Z�J�x,t�, J̃�x,t�� = �
n=0

�
�− Si�	/	J̃,	/	J��n

n!
Zf�0,0�eJ̃·�·J.

�22�

In this series all moments generated by Z�J , J̃� are expressed
as products of moments of a Gaussian measure. This expres-
sion allows us to construct Feynman diagram representations
of the moments of the distribution. If Si=0 we are left with
the simple generating functional

Z�J�x,t�, J̃�x,t�� = Zf�0,0�eJ̃·�·J, �23�

which tells us that

���x,t��̃�x�,t��� =
1

Zf�0,0�
	

	J̃�x,t�

	

	J�x�,t��
Z�J�x,t�, J̃�x,t��

= ��x − x�,t − t�� , �24�

which we can represent by a straight line connecting points
�x� , t�� and �x , t�. In these diagrams time implicitly moves to
the left, so that t�
 t in Fig. 2. The terms in Si produce
vertices with n “incoming” lines and m “outgoing” lines de-
pending on the factors of � and �̃ respectively. For example,
if Si=g�ddx dt ��̃2, then the perturbation series for
���x1 , t1���x2 , t2��̃�x3 , t3�� looks like �to first order in g�

���x1,t1���x2,t2��̃�x3,t3�� =
1

Zf�0,0�
	

	J̃�x1,t1�

	

	J̃�x2,t2�

	

	J�x3,t3�
Z

= g
	

	J̃�x1,t1�

	

	J̃�x2,t2�

	

	J�x3,t3� � ddz ds
	

	J̃�z,s�
� 	

	J�z,s�	
2

eJ̃·�·J = g� ddz ds ��x1 − z,t1 − s���x2

− z,t2 − s���z − x3,s − t3� . �25�

(x, t) (x', t')
FIG. 2. Feynman graph for the propagator. Time increases from

left to right so that t�
 t.
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This is pictured in Fig. 3. Initial state terms do not have an
integration over time �like the previous example vertex�. Ad-
ditionally, they only have “outgoing” lines, i.e., factors of �̃.
We will consider only initial state terms linear in �̃, but the
generalization is straightforward. We denote them with bold
dots in the figures to represent the initial time. For example,
if Si=�ddx �̃�x ,0���x�, i.e., there is only an initial state term,
then the exact calculation of the mean is given by

���x,t�� =� dz ��x − z,t���z� . �26�

��x� is the initial condition for ���x , t��. This graph is shown
in Fig. 4. In later graphs we will not explicitly label the
coordinates �x , t�.

In our case the vertices given by Si are somewhat more
complicated. We introduce the notation that f �n� is the nth
derivative of f . The tree-level propagator is given by

��t + ����x,t;x�,t�� −� dx f �1��I�w�x − x����x�,t;x�,t��

= 	�x − x��	�t − t�� �27�

and the vertices are given by an expansion of f�x� about x
= I as

Vmn =� ddx dt
f �n��I�

n!
�̃�w � �̃��m�w � ��n� n

m
	 , �28�

which represents n incoming lines and m+1 outgoing lines
�the n=1,m=0 term has already been incorporated into the
propagator�. In addition, the initial state terms will contribute
vertices with n=0 for any m. Graphs are constructed by tak-
ing products of vertices and replacing pairs of factors � , �̃ by
factors of the propagator �. If the vertex is part of the initial
state operator, we represent it with a bold dot. In the follow-
ing, we will be interested in vacuum graphs. Vacuum graphs
are those in which all factors of � have been paired with a
factor of �̃, and vice versa, in addition to being one-particle
irreducible. One-particle irreducible means that the graphs
cannot be rendered disconnected by cutting only a single

line. The first few terms in the series for ���x , t�� using only
the m=0, n=2 vertex are shown in Fig. 5. One can see that
this series is quite unwieldy.

IV. THE EFFECTIVE ACTION AND THE LOOP
EXPANSION

The perturbation expansion �22� is adequate in the case of
weak coupling. However, in order to systematically charac-
terize fluctuations, the loop expansion is more useful. The
loop expansion is a reorganization of the perturbative expan-
sion according to the topology of the graphs in each term. In
particular, the loop expansion collects together diagrams
with a given number of loops. Equivalently, the loop expan-
sion is a systematic expansion of the generating functional
using the method of steepest descents. Each order in this
expansion couples higher moments into the dynamics. Intro-

duce the parameter h into Z�J�x , t� , J̃�x , t�� �h serves only as
a bookkeeping parameter and must be set to 1 for physical
calculations�,

Z�J�x,t�, J̃�x,t�� =� D� D�̃ e�−S��,�̃�+J·�̃+J̃·��/h �29�

An expansion of a given moment in powers of h is equiva-
lent to an expansion in the number of loops in a Feynman
graph perturbation expansion. The correlation functions at
tree level �0 loops� have the following h dependence:

��n�̃m� � hn+m−1. �30�

Each order in the loop expansion has an additional factor of
h. Note that a�x , t�= ���x , t���h0 and ã�x , t�= ��̃�x , t���h0

�7�.
Summing the diagrams in the perturbation series that con-

tribute to ���x , t�� but contain no loops yields the solution to
the equations described as mean field theory. Incorporating
higher-order effects is a matter of including diagrams with
some number of loops. The existence of an initial state op-
erator complicates the explicit representation of this series by
adding an infinite number of graphs even at tree level. In
order to calculate even the one-loop correction to ���x , t��,
we would need to sum the infinite series consisting of the
mean field diagrams with one loop inserted in all possible
ways.

It is simpler to remove this complication by shifting the
field operators ��x , t� by the first moment:

��x,t� → ��x,t� + a�x,t� ,

�̃�x,t� → �̃�x,t� + ã�x,t� , �31�

where

(x1, t1)

(x2, t2)

(x3, t3)

FIG. 3. Feynman graph for the moment
���x1 , t1���x2 , t2��̃�x3 , t3��.

(x, t)
FIG. 4. Feynman graph for the mean with no interactions and a

simple linear initial condition, represented by the bold dot.

+ + +

FIG. 5. First four terms in the perturbation expansion of ���x , t��
using only the vertex V02. The dots represent the initial condition
operator. Time moves from right to left.
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a�x,t� = ���x,t�� ,

ã�x,t� = ��̃�x,t�� . �32�

a�x , t� is not the solution of the Wilson-Cowan equation. It is
the true mean value of the theory, including all fluctuation
effects. The solution of the Wilson-Cowan equation will be
an approximation of this.

After performing this shift, the action �including source

terms J, J̃� now looks like

S�a, ã;�,�̃� = S0�a, ã� + SF�a, ã;�,�̃� + J · �ã + �̃� + J̃ · �a

+ �� , �33�

where

S0�a�x,t�, ã�x,t�� = �
−�

�

ddx��
0

t

dt ã�ta + �ãa − ã f�w � �ãa

+ a� + I�	 − �
−�

�

ddx n̄�x�ã�x,0� , �34�

SF�a, ã;��x,t�,�̃�x,t�� = �
−�

�

ddx��
0

t

dt �̃�t� + ��̃�

− �̃f�w � ��̃� + �� + I�	 + ��̃ + ã�

��n

f �n��w � �ãa + a� + I�
n!

�w � �ã�

+ �̃a + �̃� + ���n

− �
−�

�

ddx n̄�x��̃�x,0� . �35�

For generic J,J̃, this action still has linear source terms for
the fields � , �̃, including the initial state. This term repre-
sents corrections to the mean arising from stochastic effects.
These corrections will appear at all orders of perturbation
theory, so that it would seem we have only compounded the
problem. However, since we have stipulated that a�x , t� rep-
resents the true mean �including all stochastic effects� we can
rid ourselves of this difficulty as well by using the effective
action.

The generating functional for connected graphs �or the

cumulant generating functional� is simply W�J , J̃�=h ln Z.
This gives us

hW�J, J̃� = − S0 − J · ã − J̃ · a + h ln ZF, �36�

where ZF is the generating functional with respect to SF.
Legendre transforming W gives us the effective action

��a, ã� = − hW�J, J̃� + a · J̃ + ã · J , �37�

along with the condition

	�

	a�x,t�
= J̃�x,t� ,

	�

	ã�x,t�
= J�x,t� , �38�

and so

��a, ã� = S0�a, ã� + h ln ZF
	�/	a=J̃;	�/	ã=J, �39�

where the above condition on J,J̃ is imposed upon ZF. Since
	� /	a�x , t� and 	� /	ã�x , t� are the linear source terms, set-

ting J,J̃=0 removes them from the stochastic part of the
action, including the linear initial state operators. Had we
assumed nonlinear initial state operators, they would not be
eliminated, but they would not cause the same trouble, as
they would produce loop corrections �attaching a nonlinear
initial state operator to a diagram will produce a loop�. a�x , t�
is the true mean of the theory with this choice, since we must
have

h
	W

	J̃�x,t�
= a�x,t� . �40�

The diagrammatic expansion of � is not plagued by initial
state and linear source terms. The equations of motion are
given by

	�

	a
= 0,

	�

	ã
= 0. �41�

The vertices for the Feynman diagrams that constitute the
loop expansion of the effective action are of the form �28�,
with the addition of all possible vertices, where ã and a have
been substituted for �̃ and �, respectively. The propagator is
given below in Eq. �47�. The expansion is given by the sum
of the vacuum diagrams with respect to � , �̃. Recall from
above that vacuum diagrams are those that contain no exter-
nal � , �̃ lines and are one-particle irreducible, i.e., they can-
not be disconnected by removing only a single line. The
one-particle reducible graphs are precisely those which are
eliminated via the conditions in Eq. �38� �7�.

A. Mean field theory

Before we consider the effects of fluctuations, we define
mean field theory. The mean field theory corresponding to
the action S is defined as the h→0 limit of the theory. It is
the lowest order in the steepest descent approximation. In
other words, the mean field a�x , t�= ���x , t�� is given only by
the tree level perturbation expansion. All loops and higher
moments are set to 0. This is equivalent to the theory defined
by the zero-loop approximation of the effective action �al-
though not the zero-loop approximation of the generating

functional Z�J , J̃��.
Since the zero-loop effective action is simply

�0�a�x , t� , ã�x , t��=S0�a , ã� �hence the subscript�, the mean
field theory of the effective spike model is given by
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0 =
	S�a, ã�
	ã�x,t�

= ��t + ��a�x,t� − f„w � �ã�x,t�a�x,t� + a�x,t��

+ I… −� ddx�ã�x�,t�f �1�
„w � �ã�x�,t�a�x�,t� + a�x�,t��

+ I…w�x� − x�a�x,t� , �42�

0 =
	S�a, ã�
	a�x,t�

= �− �t + ��ã�x,t� −� ddx�ã�x�,t�

�f �1�
„w � �ã�x�,t�a�x�,t� + a�x�,t�� + I…w�x� − x��ã�x,t�

+ 1� , �43�

where we have the initial conditions a�x ,0�= n̄�x� and
ã�x ,0�=0. The second initial condition implies that ã�x , t�
=0 �which we already knew from Eq. �5��. Using this result
we have

�ta0�x,t� + �a0�x,t� − f„w � a0�x,t� + I… = 0 �44�

and ã0�x , t�=0 with the initial condition a0�x ,0�= n̄�x�. We
have introduced the notation a0 , ã0 to indicate that the calcu-
lation is done to zero loops. Equation �44� is a simple form
of the Wilson-Cowan equation.

B. Loop corrections to Wilson-Cowan equation

Calculating loop corrections to the effective action pro-
vides a means of attaining systematic corrections to the
Wilson-Cowan equation. Although taking into account all
possible diagrams generated by the action SF would be a
daunting task, the result ã�x , t�=0 greatly simplifies our con-
sideration. The only diagrams that will contribute to the
mean field equation are those with precisely one factor of
ã�x , t�; higher-order terms in ã will become zero. More pre-
cisely, we need to evaluate the sum of the �1,n� proper ver-
tices ��1,n� for all n �the notation �m ,n� indicates the vertex
that has m outgoing and n incoming lines�.

The one-loop contribution is rather simple. It is indicated
graphically in Figs. 6 and 7. The vertices that contribute to

the mean equation are

−� dx dt ã�x,t�
f �2�

„w � a�x,t� + I…

2
�w � ��x,t��2 �45�

and

−� dx dt �̃�x,t�f �1�
„w � a�x,t� + I…w � ��̃�x,t�a�x,t�� .

�46�

In order to connect these vertices we need the propagator. It
is given by the bilinear part of SF. It is

�− �t + ����x − x�,t − t�� − f �1��x,t� � dx�w�x − x����x�

− x�,t − t�� = 	�x − x��	�t − t�� , �47�

where we have used the abbreviated notation f �n��x , t�
= f �n�(w�a�x , t�+ I). The one-loop contribution to the Wilson-
Cowan equation is therefore

− N�a,�� =� dx1dx2dx�dt�dx�f �2��x,t�w�x − x1�w�x − x2�

�f �1��x�,t��w�x� − x����x1 − x�,t − t����x2 − x�,t

− t��a�x�,t�� . �48�

Thus we have the one-loop Wilson-Cowan equation

�ta1�x,t� + �a1�x,t� − f„w � a1�x,t� + I… + hN�a1,�� = 0

�49�

along with Eq. �47� �with a=a1�. Further loop corrections
can be obtained as a simple application of the Feynman
rules. No new equations will be added. From this point of
view, the loop expansion provides a natural closure of the
moment hierarchy normally associated with stochastic sys-
tems. To incorporate higher-order statistical effects into the
equations, one simply needs to calculate to a higher order in
h, i.e., evaluate more loop contributions to Eq. �49�. As it
stands, Eq. �49� amounts to a “semiclassical” evaluation of
the Wilson-Cowan equation.

C. Mean field criterion

In order for the loop expansion to be valid and useful to
finite order, we need some justification for claiming that the
relative magnitude of the loop effects is diminished higher in
the expansion. In equilibrium statistical mechanics, the Gins-
burg criterion provides a condition for when loop effects
become comparable to mean field effects and hence gives a
criterion for when the loop expansion begins to break down
at finite order.

To derive an analog of this condition, we wish to know
when the one-loop correction to the propagator becomes of
the same order as the tree-level propagator. The propagator is
the solution to the linearized Wilson-Cowan equation; like-
wise the “one-loop” propagator is the solution to the linear-
ization of Eq. �49�. The diagram for this is shown in Fig. 8.
For simplicity, we are considering perturbations around a

= + + + ...

FIG. 6. Equation of motion for a�x , t�, exact to all orders.
Shown are the linear, quadratic, and cubic parts of the equation. The
gray circles represent the proper vertices which are given by the
loop expansion of the effective action. Solid lines indicate a�x , t� to
all orders; dotted lines indicate the propagator from Eq. �47�.

≈ +

FIG. 7. One-loop approximation to the quadratic term in the
equation for a�x , t�. There are similar diagrams for the cubic and
higher terms as well, all of which sum �along with the linear term�
to give the term N in Eq. �49�.
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homogeneous equilibrium solution a1�x , t�=a1. The assump-
tion that the mean field contribution is dominant implies

� − f�ŵ�p� �
f�f�

2
� ddq

�2
�d

ŵ�q�2ŵ�p − q�
�2� − f�ŵ�q� − f�ŵ�p − q��

,

�50�

where we have introduced the notation ŵ�p� to describe the
Fourier transform of w�x�. The left-hand side is the mean
field contribution while the right-hand side is the one-loop
diagram of Fig. 8. For specificity we make the assumption
that the weight function ŵ�p� is peaked at p=0. There is then
a bifurcation at a critical point determined at mean field or-
der by �= f�ŵ�0�. We can rescale the integral in �50� to ex-
tract the infrared �
q 
 →0� singular behavior �note that it is
well behaved in the ultraviolet �
q 
 → � � because of the
weight function, if not by a neural lattice cutoff�. Near criti-
cality, the dominant contribution to the integral comes from

� ddq

�2
�d

ŵ�0�3

�2� − 2f�ŵ�0� + f�w2q2�
�51�

where wn is the nth moment of the distribution w�x�. In the
limit �→ f�ŵ�0�, this integral is divergent �“infrared singu-
lar”� for d
4 �as is to be expected from the discussion be-
low on the directed percolation phase transition�. Scaling the
integration variable to q�= ldq allows us to write the condi-
tion as �after some algebra�

�w2

w0
	2

�

f�
w0A�f�,w4, . . . �

f�
ld
4−d �52�

where

ld
2 =

f�w2

2�� − f�w0�
�53�

is the diffusion length. The factor A�f� ,w4 , . . . � comes from
the regularized integral in �50�. In the absorbing state, the
diffusion length is the length to which spikes will propagate
before decaying. Loop corrections become comparable to the
tree-level contributions as this length becomes comparable to
the spatial extent of the cortical interactions. Physically
speaking, far from criticality, fluctuations do not have a
chance to propagate because perturbations away from the
mean relax quickly. Near criticality, small perturbations can
propagate throughout the system, leading to fluctuation-
dominated behavior. Note in particular that as f�→0, condi-
tion �52� is never violated. Because of the high connectivity
and long range of interactions in the cortex, we expect that
this criterion is satisfied for realistic networks.

This result implies that a loop expansion is useful and
relevant as long as one is interested in behavior away from a

bifurcation, or critical, point. Near the onset of an instability,
the loop expansion breaks down at finite order, and one must
make use of renormalization arguments.

Comparing this criterion to the well-known Ginsburg cri-
terion from equilibrium statistical mechanics, we see that the
form is identical, although the diffusion length is replaced by
the correlation length.

D. Higher-order correlations

Having both provided the equation governing the mean
field and justified the truncation of the loop expansion away
from critical points, we now wish to illustrate the calculation
of higher-order correlations to finite order in the loop expan-
sion. In particular, we will provide a recipe for calculating all
moments at tree level. The discussion of the preceding sec-
tion suggests that a tree-level computation of higher mo-
ments should be quite adequate for many purposes. Recall
also that in the loop expansion the tree level for the correla-
tions is at higher order than the mean, e.g., the two-point
correlation is at O�h�, while the mean is O�1�. A consistent
expansion requires considering all moments to the same
power in h. Consequently, a one-loop expansion in the mean
corresponds to a tree-level calculation of the two-point func-
tion. Feynman diagrams permit us to compute any such tree-
level correlation in terms of the mean field from Eq. �44� and
the propagator in Eq. �47�.

The action for the deviations from the mean is given by
ZF. The vertices are those given by the action SF while the
propagator is that from Eq. �47�. For these vertices, we can
freely set ã=0. As an example, the vertex which contributes
at tree level to ���−a�2�, ��2,0�, is

� dx dt �̃�x,t�f �1��x,t�w � ��̃�x,t�a� . �54�

Defining C�x1 , t1 ;x2 , t2�= ����x1 , t1�−a�x1 , t1�����x2 , t2�
−a�x2 , t2���, this means that

C�x1,t1;x2,t2� = h� dx dx�dt ��x1 − x,t1 − t���x2 − x�,t2

− t�f �1��x,t�w�x − x��a�x�,t�

+ h� dx dx�dt ��x1 − x�,t1 − t���x2 − x,t2

− t�f �1��x,t�w�x − x��a�x�,t� . �55�

C�x1 , t1 ;x2 , t2� is shown graphically in Fig. 9. It is straight-
forward to use the Feynman rules to construct the corre-
sponding moments �����n�. Note that we can use the func-
tion C�x1 , t1 ;x2 , t2� to write the one-loop correction to the
Wilson-Cowan equation �48� in the following form:

hN�a,�� = h
1

2
� dx1dx2f �2��x,t�w�x − x1�w�x

− x2�C�x1,t;x2,t� . �56�

The one-loop Wilson-Cowan equations are then

+

FIG. 8. Lowest-order contributions to ��1,1��0,0�. When the
one-loop contribution is of the same magnitude as the mean field
propagator, mean field theory is no longer dependable.
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�ta1�x,t� + �a1�x,t� − f„w � a1�x,t�… + h
1

2
� dx1dx2

�f �2��x,t�w�x − x1�w�x − x2�C�x1,t;x2,t� . �57�

In the same manner, higher terms in the loop expansion can
be written as couplings of the mean with higher moment
functions.

V. RENORMALIZATION AND CRITICALITY

We now analyze the critical behavior of the effective
spike model. As mentioned above, the loop expansion begins
to break down as f�w0→�. This corresponds to the situation
wherein the tendency of a neuron to be excited by depolar-
ization is balanced by the decay of the spike rate. It can be
thought of as a “balance condition” between excitation and
inhibition, since inhibition cannot be distinguished from the
effects of � in the effective spike model.

Qualitatively we can say that the breakdown of the loop
expansion corresponds to the situation wherein the branching
and aggregating processes are beginning to balance one an-
other. These processes are due to vertices that generate the
two-point correlation and couple it to the mean field at one-
loop order. If we make the following transformation on the
fields:

�̃�x,t� →� 2f�

w0
f�

�̃�x,t� ,

��x,t� → �� 2f�

w0
f�

	−1

��x,t� , �58�

the magnitudes of the coefficients of the branching and ag-
gregating vertices are equal. In addition, if f� is opposite in
sign to f� �which corresponds to a saturation of the weight
function� the vertices will have opposite sign. The trans-
formed fields now have dimensions of ���= ��̃�=d /2 �mean-
ing �2 will have dimensions of a density�. In addition, the
fact that the propagator approaches that of diffusion at large
time suggests that time should carry dimension �t�=−2. Re-
moving all irrelevant operators �those whose coefficients na-
ively scale to 0 as we scale to large system sizes� in d�4 we
have

S��,�̃� =� dt ddx��̃�t� − D�̃�2� + ��̃� + g��2�̃ − �̃2���

�59�

where we have defined renormalized parameters for the dif-
fusion constant D, decay �or growth� �, and coupling g. This
is the action for the Reggeon field theory, shown to be in the
same universality class as directed percolation �8�. An exten-
sive review of directed percolation can be found in �9�. The
minus sign between the cubic terms is a reflection of the
saturating firing rate function and is necessary for the exis-
tence of an ultraviolet fixed point, otherwise the argument
breaks down. We are making the reasonable assumption here
that the renormalized action will show this saturating char-
acter given that f�x� saturates. Resting neocortex should
therefore exhibit a directed percolation phase transition from
the absorbing �nonfluctuating� fully quiescent state to a spon-
taneously active state. This means that the scaling properties
of the cortex should be identical with those of directed per-
colation. This transition occurs as the parameter � moves
through zero from above. The bare �i.e., unrenormalized�
value of this parameter is �0=�− f�w0. Altering the relative
degree of excitation and inhibition changes the value of w0,
resulting in one method of achieving the phase transition in
practice. Note also that this action has a time reversal sym-
metry ��x , t�→ �̃�x ,−t�. This is an emergent symmetry near
the critical point.

The directed percolation phase transition �and, in general,
all nonequilibrium dynamical phase transitions� is character-
ized by four exponents � ,�� ,� ,z. These are defined as

���x,t�� � ��,

�� � �−�,

�� � �−�z,

P� � ���. �60�

��� here represents the supercritical equilibrium expectation
value. ��,� are the spatial and temporal correlation lengths,
respectively. P� is the probability that a randomly chosen
site will belong to a cluster of infinite temporal extent. The
time reversal symmetry of directed percolation implies �
=��. The mean field values of these exponents are

� = 1,

� =
1

2
,

z = 2. �61�

We have stated that d�4 above. Strictly speaking, the
upper critical dimension for directed percolation is dc=4. For
d�4, the loop corrections are no longer infrared divergent
and thus do not dominate the activity. In this regime, mean
field theory will describe the scaling behavior. Physically, the
probability of aggregating essentially vanishes and the dy-

FIG. 9. Tree-level graph for the two-point correlation function
C�x1 , t1 ;x2 , t2�. It should be compared with the diagram of the loop
correction to a�x , t� in Fig. 7.
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namics is that of a branching process. The role dimension
plays in directed percolation is to determine the number of
neighbors each lattice point will have. In the cortical case,
the weight function determines the number of neighbors a
neuron has. As determined by the criterion in Eq. �52�, the
loop corrections will not affect the mean field scaling until
the diffusion length is sufficiently large. Realistically, in cor-
tex, therefore, this theory predicts the mean field scaling of
directed percolation for near-critical systems.

The smoothness of f�s� is important to the renormaliza-
tion argument. While the theory is well defined with discon-
tinuous f�s�, the argument for criticality breaks down with,
for example, a step function, which would cause all of the
bare vertices �i.e., the coefficients of the interactions for the
unrenormalized action �13�� to diverge. It is interesting to
note that, in a previous version of neural dynamics, Cowan
�6� identified his two-state neural Hamiltonian as being a
generalization of the Regge spin Hamiltonian, a reformula-
tion of Reggeon field theory �10�.

Evidence consistent with this prediction has already been
observed in cortex. Beggs and Plenz �11� have made micro-
electrode array recordings in rat cerebral cortex which mani-
fest a behavior they term “neuronal avalanches.” These ava-
lanches have precisely the character of directed percolation
clusters and exhibit critical power law behavior. They mea-
sure an avalanche size distribution �equivalent to the cluster
mass distribution of directed percolation� with an exponent
of −3/2. It is the distribution given by

P�S� = �	�� ddx dt ��x,t� − S	exp��̃�0,0��
 �62�

where n̄ in the action is set to zero. The exponential term
represents an initial condition of precisely one active site at
the origin. The avalanche size is the integrated activity in
both space and time. The 	 function limits the path integra-
tion of the field theory to those configurations of avalanche
size S. The prediction of directed percolation near criticality
gives the following scaling:

P�S� = S1−�g��S�� �63�

where � and � are

� = 2 +
�

�d + z�� − �
,

� =
1

�d + z�� − �
. �64�

Using mean field values of the exponents we get

� =
5

2
,

� =
1

2
, �65�

and so P�S��S−3/2. The effective spike model predicts the
correct avalanche size distribution.

The effective spike model makes some rather severe as-
sumptions about the network. In particular, the homogeneity
of the network dynamics may not be adequate for realistic
systems. For descriptions of cortex, there should be some
degree of disorder associated with both the decay constant �
and the weight function. It has been shown that, although
quenched spatial and temporal disorder each separately have
severe repercussions upon the universal behavior of directed
percolation, spatiotemporally quenched disorder does not af-
fect the universality class �9�. The disorder we expect from
the nervous system is due to both spatial inhomogeneities
and plasticity, which together constitute spatiotemporal dis-
order.

Altering the definition of the dynamics in fundamental
ways will produce different universality classes. Naturally,
universality implies that a wide range of models will produce
the same critical behavior. In particular, however, the incor-
poration of refractory effects in a certain way will result in
the universality class of dynamic isotropic percolation rather
than directed percolation. Dynamic isotropic percolation pro-
duces the same prediction for the avalanche size distribution.

VI. DISCUSSION

We have presented a field theory for neural dynamics de-
rived solely from the assumption of the Markov property and
using neurophysiology to formulate the relevant master
equation. This theory facilitates the calculation of all of the
statistics in a well-defined expansion whose truncation is jus-
tified due to the high connectivity of cortical interactions.
Also, we can now easily ask how the model responds to
correlated input; the equations are a straightforward exten-
sion of those presented above. Furthermore, the fact that the
firing rate function must saturate suggests a renormalization
argument which allows for the characterization of the fluc-
tuations near criticality. The effective spike model suggests
that the resulting phase transition is in the directed percola-
tion universality class, although dynamic isotropic percola-
tion is another candidate implied by plausible neural dynam-
ics, i.e., refractoriness. It remains to characterize the extent
of finite size effects in the effective spike model.

It is important to emphasize that this approach naturally
solves the closure problem. In essence, one exchanges the
closure problem for an approximation problem. The vital dif-
ference is that in the present formalism one has a means of
estimating at what point the loop expansion will break down.
In addition one has recourse to the renormalization group
when it does.

This model has predictions that are consistent with obser-
vations of fluctuations in neocortex. We have already de-
scribed the Beggs and Plenz observation of critical branching
behavior in a neocortical slice �11�. Segev et al. also studied
neural tissue cultures and found power laws in interspike and
interburst intervals �12�. In the arena of simulations, the
Tsodyks-Sejnowski computations of networks obeying a bal-
ancing condition �13� exhibit the same qualitative behavior
as the Beggs and Plenz data, although Tsodyks and Se-
jnowski did not measure critical exponents.

Of course, the prediction of the −3/2 power law for ava-
lanche distributions is not new �14–16�, and there has been
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plenty of work on modeling avalanches in neural networks
�17,18�. In particular, Eurich et al. have presented an ava-
lanche model which admits an analytic calculation of the
avalanche size distribution for an all-to-all uniform con-
nected network of finite size. As stated, our goal was to pro-
duce a formulation of neural network dynamics which builds
upon the established Wilson-Cowan approach by systemati-
cally incorporating fluctuation effects. For example, not only
do we have an extension of the Wilson-Cowan equation but
our method also permits the calculation of correlation func-
tions, or “multineuron” distribution functions, and facilitates
the study of the dynamics of these correlation functions. In
addition, our method of analysis has allowed us to refrain
from making certain simplifying assumptions about the con-
nectivity; in particular, we do not require the network to be
all-to-all uniformly coupled, so that our formalism admits the
study of pattern formation. From this point of view, the goal
of our work has been the determination of the semi-classical
Wilson-Cowan equations �47� and �49�, and a systematic
means of enhancing the approximation derived from the loop
expansion.

A side effect of the field theoretic approach is the identi-
fication of a directed percolation fixed point in our model,
and a nice connection between the Wilson-Cowan-derived
literature �see, for example, �19�� and the avalanche model-
ing literature through the predicted avalanche size distribu-
tion. It is important to emphasize that our work identifies the
criticality in cortex as a manifestation of a directed percola-
tion phase transition, the tuning of which is governed by the
magnitude of the intercortical interactions. From an experi-
mental point of view, the question now regards the identifi-
cation of the correct nonequilibrium phase transition that
governs criticality in the cortex. In turn, this will inform the
theorist about which classes of models are appropriate for
neural dynamics. For example, if experiment determines that
dynamic isotropic percolation is the correct universality
class, then the large class of models which exhibit directed
percolation as their only phase transition are fundamentally
inappropriate. In our view the universality class being stud-
ied in much of the avalanche literature is in fact tuned di-
rected percolation, with the tuning parameter sometimes dif-
ficult to find. This view of self-organized criticality has been
expressed before �20,21�. In keeping with this interpretation,
the avalanche results of Beggs and Plenz are dependent upon
a small effective input. A large input would have a similar
effect to a large magnetic field on a critical Ising network. In
cortex, where the inputs are expected to be somewhat larger
than in a prepared slice, we no longer expect avalanche be-
havior. This is also consistent with results observed in cortex
�22�, where in vivo data produces no activity recognizable as
avalanche behavior.

Self-organization in a more general sense, however, may
actually play an important role in neocortex. It has been
shown that the strength of synaptic contacts adapts to the
average firing rate �23�. In particular, increased firing reduces
the synaptic strength whereas decreased firing increases it.
Such a mechanism could provide neocortical dynamics with
a tendency to move towards a critical point by providing a
means of tuning the parameter w0, for example.

The potential importance of criticality in neural dynamics
is evident upon considering its computational significance. In

the absorbing state, activity is too transient to be useful to an
“upstream” network, although the response will be local and
the character of the stimulus can be distinguished. Likewise,
in the active state �or in the growth phase of branching� the
response will quickly trigger a stereotypical pattern, provid-
ing a response that is useless for discriminating stimuli. The
critical state is precisely the region in which stimuli can be
distinguished �they retain a degree of locality� in addition to
possessing a degree of stability for use in computation. This
stability is due to critical slowing down as the decay or
growth exponent tends to zero. Beggs and Plenz have simi-
larly remarked that critical behavior may serve to balance the
competing requirements of stability and information trans-
mission �11�.

The work presented here also suggests that epileptic sei-
zures are manifestations of directed percolation phase transi-
tions. Epileptic conditions are associated with changes in the
susceptibility of neocortex. In particular, in lesioned areas,
the connectivity tends to increase as a result of neural growth
around the lesion. In our view, this serves to increase w0,
driving the system toward the active region. The importance
of the saturation of the firing rate function here is that, in real
tissue, a single epileptic seizure does not completely destroy
neocortex, although damage is incurred over time. This
would be the outcome were the network completely linear.
The active state in directed percolation produces spontaneous
neocortical activity in the absence of stimuli.

We would like to emphasize the concept of universality
which we have implicitly introduced in a neural context. If
indeed the concept of criticality is important for cortical
function, then several biologically relevant questions arise.
Principally, what is the function of criticality itself? Beyond
this, however, we must ask what role any given universality
class plays in neural dynamics. Universality suggests that
detailed interactions are unimportant for those functions that
may depend upon criticality. As such, a host of simple mod-
els may be expected to account for a range of phenomena.
Whether one model more accurately represents the detailed
biological dynamics may then say more about the evolution-
ary path by which that system was realized than about the
actual function. The first step in this regard is to identify the
dynamic universality classes present in the cortex.

It is important to understand that more detailed biological
models may introduce different sets of relevant operators and
thus potentially alter or remove the universal behavior we
have described, although the results of Beggs and Plenz are a
strong point in favor of the ubiquitous directed percolation
universality class. We have already mentioned that spatially
or temporally quenched disorder removes the universality of
the model, whereas spatiotemporal noise preserves it. It is
also important to understand that universality in the cortex
does not preclude the importance of nonuniversal properties,
which likely affect many cortical phenomena, otherwise the
entire understanding of the cortex could be reduced to the
field theory governing a single universality class. As a simple
example, much of the cortex operates within a regime with
strong, correlated inputs. While our theory is equipped to
handle this, universality governs the behavior of spontaneous
or near-spontaneous cortex. The importance of criticality
from this regard may be to identify classes of theories,
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namely, those which exhibit the correct universal behavior.
Much traditional work in theoretical neuroscience in-

volves analysis of mean field equations. Not only have we
expanded this structure by advocating a statistical approach,
we have connected it to the concepts of criticality and uni-
versality in the cortex. In summary, we have demonstrated
that both fluctuations and correlations in neocortical activity
can be accounted for using field theoretic methods of non-
equilibrium statistical mechanics, may play an important role
in facilitating information processing, and may also influence
the emergence of pathological states.
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APPENDIX A: OPERATOR REPRESENTATION OF THE
EFFECTIVE SPIKE MODEL

Following Doi �24,25� and Peliti �26� we can introduce
creation-annihilation operators for each neuron:

��i,� j
†� = 	ij �A1�

These operators generate a state space by acting on the
“vacuum” state 
0�, with �i 
0�=0. Inner products in this
space are defined by �0 
0�=1 and the commutation relations.
The dual vector to �i

† 
0� is �0 
�i. These operators allow us
to “count” the number of spikes at each neuron by using the
number operator �i

†�i and the following representation of
each configuration n�:


n�� = �
i

�i
†ni
0� . �A2�

We have

�i
†�i
n�� = ni
n�� �A3�

as can be derived from the commutation relation �A1�. We
can then use this to define states of the network,


��t�� = �
n�

P�n� ,t��
i

�i
†ni
0� = �

n�
P�n� ,t�
n�� , �A4�

where P�n� , t� is the probability distribution given in the mas-
ter equation �1� and the sum is over all configurations n� .

If we introduce the “projection” state


p� = exp��
i

�i
†	
0� , �A5�

we can compute expectation values. In particular,

�p
�i
†�i
��t�� = �

n�
niP�n� ,t� = �ni�t�� . �A6�

Similarly, for products of the number operator, we have

�p
�i
†�i� j

†� j�k
†�k ¯ 
��t�� = �ni�t�nj�t�nk�t� ¯ � .

�A7�

The previous equation can also be generalized so that each
neuron is considered at a different point in time, i.e.,

�ni�t�nj�t��nk�t�� ¯ � , �A8�

since the governing equation for P�n� , t� is first order in time.
By acting with �t on the state 
��t��, we can construct a

representation of the master equation:

�t
��t�� = �
n�

�tP�n� ,t�
n�� = �
i

��ni + 1�P�n� i+,t� − �niP�n� ,t�

+ f��
j

wijnj + I	�P�n� i−,t� − P�n� ,t��
n��

= ��
i

���i − �i
†�i� + fNO��

j

wij� j
†� j + I	��i

†

− 1��
��t�� , �A9�

where we have used the master equation �1�, and where the
subscript NO indicates that f is defined by its Taylor expan-
sion about I, where the operators are normal ordered at each
order in the series �all creation operators are placed to the
right of all annihilation operators�. The master equation is
thereby written in the form

�t
��t�� = − Ĥ
��t�� �A10�

with Hamiltonian

Ĥ = ��
i

���i
†�i − �i� + fNO��

j

wij� j
†� j + I	�1 − �i

†�� .

�A11�

As a convenience, we can commute the operator
exp��i�i

†� all the way to the right in expectation values. This
allows us to define all expectation values as vacuum expec-
tation values. The projection state operator would appear as a
final condition operator for �̃ in the action of the field theory.
This procedure allows us to get rid of this operator. Using the
commutation relation, we see that this is equivalent to per-
forming the shift

�i
† → �i

† + 1. �A12�

The number operator becomes

�i
†�i → �i

†�i + �i. �A13�

Now expectation values are given by
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�0
��i
†�i + �i��� j

†� j + � j���k
†�k + �k� ¯ 
��t��

= �ni�t�nj�t�nk�t� ¯ � . �A14�

The Hamiltonian Ĥ is now given by

Ĥ = ��
i

��i
†�i − fNO��

j

wij� j
†� j + I	�i

†� . �A15�

An initial state that is Poisson distributed with mean n̄i
would be


��0�� = e−n̄i�
i

�
k

n̄i
k

k!
�i

†k
0� = exp��
i

�− n̄i + n̄i�i
†�	
0� .

�A16�

After shifting it becomes


��0�� = exp��
i

n̄i�i
†	
0� = Î
0� , �A17�

which defines the initial state operator Î.

APPENDIX B: COHERENT STATE PATH INTEGRALS

1. Definition and properties of coherent states

Coherent states have the form


�� � = exp��
i

�i�i
†	
0� . �B1�

The vector �� has components �i, which are eigenvalues of
the annihilation operator,

�i
�� � = �i
�� � . �B2�

These eigenvalues �i are complex numbers; we use a tilde to
denote the conjugate variable �̃i. They obey the complete-
ness relation

� �
i

d�id�̃i exp�− �
i


�i
2	
�� ���� 
 = 1. �B3�

The integration of �i follows the real line, whereas the inte-
gration of �̃ is carried out along the imaginary axis. Because
of property �B2� the coherent state representation of a normal
ordered operator is obtained very simply:

��� 
�i
†�i
�� � = �̃i�i��� 
�� � = �̃i�i exp���̃ · �� � . �B4�

We will define the coherent state representation of a �normal

ordered� operator Ô to be

O��� ,�� � = ��� 
Ô
�� �exp�− ��̃ · �� � . �B5�

2. Path integrals

We can use the coherent state representation to transform
the operator representation of the master equation �A10� into
a path integral over the coherent state eigenvalues � , �̃. We
can write the solution to the master equation in the form


��t�� = e−Ĥt
��0�� . �B6�

We divide the time evolution into Nt small steps of length �t
using the formula

e−Ĥt = lim
Nt→�

�1 −
Ĥt

Nt
	Nt

. �B7�

After each time step ti, we insert a complete set of coherent
states using the completeness relation �B3�. Taking the ex-
pectation value by forming the inner product with 
0� �or 
p�
in the nonshifted representation� and taking the limit Nt
→�, we get the path integral

1 = �0
��t�� =� �
i

D�iD�̃i exp − ��
i
� dt �̃i�t��t�i�t�

− H„�̃i�t�,�i�t�…	I��̃� �B8�

where H and I are the coherent state representations of the
Hamiltonian and the initial state operator. By adding the

terms �dt�iJi�̃i and �dt�iJ̃i�i to the exponential, this be-
comes a generating functional for the moments of �i and �̃i.
Using the Hamiltonian and initial state operators from Ap-
pendix B and taking the continuum limit in the neuron label
i, we have the action defined in Eq. �13�.

Because the action is first order in time, the propagator
will have the step function as a factor:

���x,t��̃�x�,t��� � ��t − t�� . �B9�

The action above is defined with the convention that ��0�
=0. This can be seen either as a result of the fact that opera-

tors which go into Ĥ must be normal ordered �choosing
��0�=1 produces exactly the normal ordering factor in the
propagator� or as equivalent to the Ito prescription for defin-
ing stochastic integrals.

From Eq. �A14� we see that the moments of the quantity
n�x , t� are given by moments of

�̃�x,t���x,t� + ��x,t� . �B10�

The first moment is therefore

�n�x,t�� = ���x,t�� �B11�

because of the ��0� prescription. Care must be taken if the
time points coincide. The second moment comes from the
operator

�i
†�i� j

†� j = �i
†� j

†�i� j + �i
†� j	ij , �B12�

which becomes upon shifting

��i
† + 1��� j

† + 1��i� j + ��i
† + 1�� j	ij , �B13�

implying that the equal-time two-point correlation function is
given by
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�n�x,t�n�y,t�� = ���x,t���y,t�� + 	�x − y����x,t�� .

�B14�

One would come to the same conclusion by taking the time
points separate, using �B10�, and taking the limit as the time
points approach each other.

APPENDIX C: THE COWAN MODELS

The Cowan models are analyzed in a similar fashion to
the effective spike model. For the representation, each of the
neural states, active, quiescent, and refractory, is assigned a
basis state for each neuron. The state of the system is the
tensor product of all such states over each neuron, provided
that one and only one neuron is at each spatial point, i.e., the
probability of finding a neuron in some state at each point is
precisely 1. The same coherent state procedure results in an
action with a separate field for each state of the neurons, the
expectation value of which gives the probability for a neuron
to be in that state.

The action for a network of two-state neurons is

S��,�� = �
−�

�

dt ddx��̃�x,t��t��x,t� + �̃�x,t��t��x,t�

+ ��
��x,t�
2 − �̃�x,t���x,t�� + �
��x,t�
2

− �̃�x,t���x,t��f„w � �
��x,t�
2 + ��x,t��…�

+� ddx�p�x��̃�x,0� + q�x��̃�x,0�� . �C1�

The fields � and � here stand for the active and refractory

neural fields. p�x� and q�x� are the initial densities and
p�x�+q�x�=1.

Likewise, the action for the three-state neurons is given
by

S��,�,
� = �
−�

�

dt ddx��̃�x,t��t��x,t� + �̃�x,t��t��x,t�

+ 
̃�x,t��t
�x,t� + ��
��x,t�
2 − 
̃�x,t���x,t��

+ ��

�x,t�
2 − �̃�x,t�
�x,t�� + �
��x,t�
2

− �̃�x,t���x,t��f„w � �
��x,t�
2 + ��x,t��…

+ �

�x,t�
2 − �̃�x,t�
�x,t��g„w � �
��x,t�
2

+ ��x,t��…� +� ddx�p�x��̃�x,0� + q�x��̃�x,0�

+ r�x�
̃�x,0�� . �C2�

The extra field 
 represents the refractory neurons and r�x�
its initial density. Now we have the requirement that p�x�
+q�x�+r�x�=1. The extra firing function g�s� accounts for
the possibility of refractory neurons entering the active state.

Since the action is quadratic in those fields corresponding
to the quiescent and refractory states, they can be integrated
out to arrive at an action for just the active neurons. Provided
that we assume the majority of the neurons are quiescent and
neglect the non-local temporal effects, we get the action of
the effective spike model with some effective firing rate
function f�s� �in general different from that in the above two
actions�.
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